ESP8266 + Arduino + OpenWRT: проект температурного логера на датчиках DHT11 и DS18B20, пошаговое руководство

разделы: Интернет вещей, Arduino, дата: 19 декабря 2018г.

ESP8266 может работать в двух режимах: в режиме интерпретатора AT-команд или в режиме самостоятельного микроконтроллера с wifi модулем. Работу ESP8266 в режиме интерпретатора AT-команд я рассматривал в предыдущей статье, эта же статья рассматривает работу ESP8266 в качестве самостоятельного микроконтроллера.

Способов программирования ESP8266 опять же два, первый - это программирование с помощью ESP8266 фреймворка для Arduino IDE, второй - это программирование через esp-open-sdk. В первом случае мы можем использовать готовые библиотеки Arduino, во втором случае вы можем положиться только на функционал SDK и свой собственный код.

В этой статье мне хотелось бы рассмотреть программирование ESP8266 с помощью ESP8266 фреймворка для Arduino IDE. Данная тема решает широкий спектр задач обеспечения радиоканалом разного рода датчиков и простых устройств управления нагрузкой.

В качестве примера в статье рассматривается пошаговое написание прошивки для температурного логера на датчиках DHT11 и DS18B20. Первый датчик используется для определения комнатной температуры и влажности, второй используется для определения уличной температуры. Я статье используется плата ModeMCU ESP8266, т.к. там есть автозагузка прошивки, но в принципе может быть использована любая другая плата на модуле ESP12E/ESP12F. Данные модули оснащены флеш-памятью на 4 мегабайта, что позволяет забыть о жёсткой оптимизации размера прошивки, когда борьба идёт за каждый байт.

При работе с ESP8266 есть выбор: либо использование его совместно с "облаками", либо собственным внешним сайтом, либо собственном сервером расположенным в интросети или автономной работой ESP826, когда веб-сервер запускается на самом ESP8266.

В данном проекте используется веб-сервер uhttpd на роутере с прошивкой OpenWRT. ESP8266 передаёт на него показания датчиков, а роутер их сохраняет и виде обычных файлов, и делает их доступными для просмотра через web-интерфейс. Можно дать новую жизнь старому смартфону или планшету настроив их на отображение таких web-страниц. Web-интерфейс универсален и может отображаться на любых браузерах любых устройств.

    Ссылки на полезные ресурсы и документацию:
  1. ESP8266 фреймворк для Arduino IDE
  2. Документация на библиотеку ESP8266WIFI
  3. Документация на Arduino библиотеку WiFi library
  4. Руководство на датчик AM2320: "Digital Temperature and Humidity Sensor AM2320 Product Manual"
  5. Руководство на датчик DS18B20: "DS18B20 Programmable Resolution 1-Wire Digital Thermometer"
  6. Руководство на датчик DHT11: "DHT11 Humidity & Temperature Sensor"

Содержание:

I. Начало работы с ESP8266 фреймворком для Arduino IDE

  1. Установка ESP8266 фреймворка для Arduino IDE
  2. Подключение датчика DHT11 к ESP8266
  3. Подключение датчика DS18B20 к ESP8266

II. Работа с библиотекой ESP8266WIFI

  1. Установка WiFi соединения
  2. Использование режима энергосбережения DeepSleep
  3. Класс WiFiClient, получение web-страницы от сервера на OpenWRT и отправка данных через GET запрос
  4. Отправка на web-сервер данных с датчика DHT11 через GET запрос
  5. Добавление датчика DS18B20
  6. Вывод показаний датчиков через веб-интерфейс

III. Добавлено позже

  1. Второй WiFi термометр на датчике AM2320 (добавлено 26.05.19г)

Читать дальше

Связь двух микроконтроллеров на примере подключения 4-х разрядного семисегментного индикатора к Arduino через вспомогательный микроконтроллер ATtyny13a

разделы: Arduino, AVR, UART, I2C, дата: 29 января 2018г.

Если под вашу задачу требуется большее число пинов/портов/мегагерц/памяти, чем имеется в используемом вами микроконтроллере, то в ответ на эту проблему обычно советуют взять микроконтроллер "покрупнее". Ответ не лишенный смысла, однако мне удалось найти задачку, от которой так просто не отмахнешься. Героем сегодняшней статьи будет 4-х разрядный семисегментный индикатор с динамической индикацией.

Я уже упоминал о нем в статье про сдвиговые регистры, но тогда у меня не было на руках самой железки, и соответственно говорил я лишь теоретически. Сами ардуинщики об индикаторе отзываются не очень лестно, т.к. применение этого индикатора ограниченное из-за того, что вследствие динамической индикации его нужно постоянно обновлять, что накладывает серьезное ограничение на основную программу. Теоретически эту задачу можно было бы "скинуть" в прерывание таймера, но решение это спорное.

В модуле меня привлекла его компактность. К примеру, для приборной панели паяльной станции, где место сильно ограничено, это то что надо. После некоторого размышления я решил, что в целом модуль неплох, но... для него требуется отдельный управляющий микроконтроллер, сопроцессор, на котором будет крутиться динамическая индикация.

Индикатор не содержит подтягивающих резисторов(!), возможно здесь используются сдвиговые регистры с подтяжкой? Так или иначе, я замерял потребление модуля через EnargyTrace и получил значение около 23mA при питании 3.3 Вольт, что для такой "гирлянды" вполне нормально.

Китайские ATtiny13a в SO-8 корпусе стоят около 15₽, они имеют пять рабочих выводов, три из которых нужно будет отдать на индикатор, остаются два вывода для организации линии связи, что более чем достаточно, но простенький SPI сюда не посадишь, т.к. тот SPI который будет использоваться для управления индикатором, работает мастером, а для связи с "главным" микроконтроллером нужен будет слейв( запускать слейв на главном микроконтроллере - это не вариант). К сожалению или к счастью(смотря как посмотреть), АTtiny13a не поддерживает аппаратно абсолютно никаких протоколов.

Т.о. перед нами стоит задача на ATtiny13a организовать c использованием не более двух пинов скоростную и надежную линию для приема двухбайтного числа от главного микроконтроллера, и отобразить его на 4-х разрядном семисегментном индикаторе. В идеале было бы использование аппаратного протокола главным микроконтроллером и его программной реализации на ATtiny13a. Также хотелось бы, что чтобы код реализации протоколов занимал минимально возможное место на флеше, чтобы его потом можно было использовать в других более сложных проектах.

    Оглавление статьи:
  1. Счетчик на ATiny13a и 4-х разрядном семисегментном индикаторе
  2. Простой протокол на счетчике импульсов
  3. Пакетная передача данных с использованием буфера
  4. Программный UART для ATtiny13a
  5. Программный I2C Slave на ATtiny13a

Т.к. подразумевается использование индикатора для отображения температуры паяльника, во всех примерах будут задействованы только три разряда индикатора.

Полные исходники вместе со сборочными файлами и скомпилированными прошивками можно скачать по ссылке к конце статьи.

Читать дальше

ATmega8 + PCF8574: 8-битный расширитель портов на I2C интерфейсе

разделы: AVR, Arduino, I2C, HD44780, дата: 24 октября 2017г.

Статья правилась 5-го августа 2022г. Было испрвлено неверное определение: "сдвиговый регистр pcf8574" на правильное: "расширитель портов pcf8574". Добавлено оглавление. Также поправлена битая ссылка на datasheet.

Этот расширитель портов наиболее известен по китайским драйверам дисплея HD44780, которые можно приобрести на али или ибэе. Он довольно подробно был разобран здесь: "Сообщество EasyElectronics.ru: I2C расширитель портов PCF8574". Я в свою очередь, попытаюсь сосредоточиться на программировании микроконтроллера ATmega8 для работы с этим регистром. Впрочем, начну я все же с Arduino и имеющегося у меня зоопарка: ATmega328/MSP430G2553/STM32F103C8.

Расширитель портов PCF8574 может выпускаться разными фирмами, мне попались чипы с суффиксом "T", что обозначает производителя как "NXP Semiconductor". Руководство на pcf8574t можно скачать с официального сайта NXP: "PCF8574; PCF8574A Remote 8-bit I/O expander for I2C-bus with interrupt".

Содержание:

I. Общие сведения

  1. Немного справочной информации
  2. Подключение LCD HD44780 к Arduino через модуль драйвера на PCF8574
  3. Подключение LCD HD44780 к STM32duino через модуль драйвера на PCF8574
  4. Подключение LCD HD44780 к MSP430 Launchpad через модуль драйвера на PCF8574
  5. Arduino библиотека PCF8574

II. Работа PCF8574 + ATmega8

  1. Сканер I2C шины
  2. Бегущий огонь на расширителе портов PCF8574
  3. Управление семисегментным индикатором через расширитель портов PCF8574
  4. Чтение из расширителя портов PCF8574
  5. Подключение LCD HD44780 через расширитель портов PCF8574

Читать дальше

Arduino: библиотеки для работы с RTC DS1307,DS3231

разделы: Arduino, STM32duino, RTC, дата: 18 сентября 2017г.

В завершении прошлой статьи я приводил ссылку для проверки I2C модуля RTC DS3231. Для этого не надо устанавливать никакие библиотеки, достаточно скопировать текст программы в Arduino IDE и кликнуть на загрузку скетча в микроконтроллер. Это одинаково работает как в Arduino IDE, так и в MSP430 Energia и STM32duino.

Однако, больше чем для проверки этот пример не годится, и рано или поздно перед каждым встает вопрос написания своей библиотеки для полноценной работы с RTC. Отчет времени, с календарем или без, довольно распространенная штука, и этот код вы скорее всего будете тащить из проекта в проект. Т.е. это вещь которую проще один раз хорошо сделать, что бы потом к этому не возвращаться.

Сам я уже прошел по этому пути, но т.к. написанный код уже не умещался под спойлерами, поэтому пришлось написать полноценную Arduino - библиотеку. В заключение будет несколько примеров с использованием этой библиотеки, с тем, как на мой взгляд нужно правильно работать с DS1307/DS3231.

Но прежде чем "городить огород", предлагаю взглянуть на готовые решения, одобренные "патриархами" arduino.cc, а именно: библиотеки Time, DS1307RTC, а также DS3232RTC которая работает совместно с библиотекой Time.

    Для начала решим, что нам нужно от RTC типа DS1307/DS3231:
  • Автономный отчет времени, т.е. когда микроконтроллер при старте получает текущее время, а затем он уже считает время самостоятельно и не забивает I2C шину трафиком с RTC.
  • Отчет времени по SQW-выводу, когда RTC тактирует счетчик часов микроконтроллера через внешнее прерывание, и микроконтроллер самостоятельно рассчитывает календарные данные и текущее время.
  • Поддержка будильников.
  • Поддержка внесения поправок к ходу часов.
  • Периодическая синхронизация.

Вроде бы немного, и вроде бы несложно.

Весь код я буду тестировать на Arduino Nano, MSP430 Launchpad - Energia и на STM32duino - Blue Pill.

Общая концепция библиотек для работы со временем такая. Имеется базовая библиотека TIME которая ведет через функцию millis() расчет времени при запросе такого через функции библиотеки hour(), minute(), second() и т.д. Библиотека абстрагируется от аппаратной части того или иного хронометра. Она рассчитана на ведение календаря и отчет времени средствами самого микроконтроллера, без подключения RTC. Соответственно библиотеки DS3232RTC и DS1307RTC добавляют функции синхронизации микроконтроллера с RTC.

Содержание:

  1. Библиотека Time
  2. Библиотека DS1307RTC
  3. Часы реального времени повышенной точности с алгоритмом термокомпенсации DS3231
  4. Библиотека DS3231SQW

Читать дальше